ELLI-CT 72-0163

2985

PHYSICAL REVIEW B

VOLUME 5, NUMBER 8

15 APRIL 1972

Pressure Dependence of the Carrier Concentrations in *p*-Type Alloys of $Hg_{1-x}Cd_xTe$ at 4.2 and 77°K^{*}

C. T. Elliott,[†] John Melngailis, T. C. Harman, J. A. Kafalas, and W. C. Kernan Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, Massachusetts 02173 (Received 6 December 1971)

Electrical transport measurements have been made on *p*-type samples of $\operatorname{Hg}_{1-x}Cd_x\operatorname{Te}$ with *x* near 0.15 at temperatures of 4.2 and 77°K and at hydrostatic pressures up to 9 kbar. A sharp transition is observed in both the Hall coefficient and conductivity versus pressure at 4.2°K. The pressure dependence of the carrier concentrations and mobilities has been obtained from magneto-Hall and magnetoresistance data. Analysis using $\vec{k} \cdot \vec{p}$ theory yields values for the Fermi energy, measured with respect to the valence-band edge, of more than 9 meV, which are independent of pressure. A possible model to account for this behavior is described. Magnetic freeze-out effects have been observed and attributed to the lowest-energy, spin-split, zero-order Landau level passing through the Fermi energy. A value of $7 \times 10^{-6} \text{ eV}$ / bar is obtained for the pressure coefficient of the energy gap at 77°K. Non-Ohmic behavior has been observed at 4.2°K during the magnetic freeze-out.

INTRODUCTION

A continuous range of Hg_{1-x}Cd_xTe alloys can be formed between the semimetal HgTe and the semiconductor CdTe. The general features of the band structure are now well established (see review papers by Long and Schmit¹ and Harman²). HgTe is a semimetal with an inverted band structure, like that proposed for gray tin, ³ with a negative $\Gamma_6 - \Gamma_8$ energy gap of 0.3 eV, at low temperature. The energy gap increases approximately linearly with x, going through zero for $x \simeq 0.15$ at low temperature. At higher values of x the alloys are semiconducting with a band structure qualitatively like that of the direct-gap III-V compounds. A large number of investigations (see review papers for references) have established that the dispersion relation for the conduction band is well described by Kane's k p model.⁴ A recent determination⁵ from magnetoreflection measurements yielded a value of 8.4×10^{-8} eV cm for the Kane matrix element.

The behavior of *n*-type $Hg_{1-x}Cd_xTe$ is now relatively well understood, but the valence-band parameters have yet to be established. Reported values for the heavy-hole mass range from $0.3m_0$ to $7m_0$, ⁵⁻¹¹ and the band overlap energy in the semimetallic alloys, due to the warping of the heavy-hole band, has not been reliably determined. In general, the

electrical transport properties of the *p*-type alloys have proved complex and difficult to interpret.^{5,12-14}

The object of this work was to obtain information on the valence-band structure and on acceptor levels near the valence-band edge. Measurements of the electron and hole concentrations have been made on p-type, nearly zero-band-gap semiconducting samples, as the energy gap was opened up with hydrostatic pressure. Because of the high electron-tohole mobility ratio the minority electrons can dominate the transport properties in the semimetallic state and large changes in the transport coefficients occur during the semimetal-semiconductor transition produced by applying pressure.

Hydrostatic pressure measurements have been made previously only on *n*-type $Hg_{1-x}Cd_xTe^{15}$ and $HgTe^{16,17}$ at 300 and 77 °K, and on *p*-*n* junctions in $Hg_{1-x}Cd_xTe$.¹⁸ The values obtained for the pressure coefficient of the energy gap vary from 8 to $14 \times 10^{-6} \text{ eV/bar}$.

In this paper we describe first the experimental procedure, then the results obtained, and finally the analysis and interpretation of the results.

EXPERIMENTAL PROCEDURE

Sample Preparation

Single crystals of $Hg_{1-x}Cd_xTe$ were grown by a

